
Multi threaded query accelerator: A case study

Durgaprasad S. Pawar

Starent Networks Ltd.

Abstract:

 As the amount of data in the database grows more and more it becomes necessary

in most of the applications using database to organize it in a way which is optimized for

both high data insertion rate and faster query execution. This paper presents a case study

which describes a database design which uses data partitioning to store huge data and a

lightweight multi-threaded application which works as a middleware for faster query

execution (up to 13 times). More emphasis is given on the multi-threaded application

which executes queries spanning across multiple tables, faster than only one single-

threaded Postgres process.

 Approximately 90GB of data is going to be supported by this implementation

with queries spanning across entire data.

Data size and H/W specification:

 ~90 GB of data spread across

more than 20 tables is stored in the

database. The tables are partitioned on

day basis and inheritance is used to

enable easy maintenance of data. Each

table contains ~20,000,000 to

~40,000,000 records.

 The H/W used to run the

application is 2 processor machine with

2 hard disks, 2GB of RAM 4GB of swap

space (Sun-Fire-V245).

Need for speed:

 The data is continuously flowing

into the machine at a very high rate and

is available on the machine’s local hard

disk. This data is then processed and

entered into the DB in appropriate

tables. Following precautions are taken

during data insertion:

1. No indexes/constraints are present on
the table

2. Bulk copy operations are used
instead of single inserts.

Above measures have helped improve

database insertion rate by more than 2

times.

 Along with high data insertion

rates, minimum query time is expected

when queries are fired on the DB. The

results of the query are dumped into a

file and the file is then available as a

report for data analysis.

Database can do it all? No:

 High data insertion rates are

managed by Postgres with its default

configurations. However, we face

following problems/limitations while

using Postgres for querying:

1. Time taken to execute the

application specific queries is very

high since queries span across

multiple tables with huge size and

involve ‘GROUP BY’ and

‘aggregation’ operations.

2. For data spanning across more than 3

tables, Postgres throws ‘out of

memory’ error when the query

executing Postgres process size goes

beyond 4GB
1
.

1
Since we are using 32 bit processor, 4GB is the

max address space for a process

3. For querying on large data sets
significantly more ‘shared_memory’

2

and ‘work_memory’
2
 is required.

Multi threaded application

functioning:

 A multi threaded application is

therefore designed to get results from

multiple tables using different DB

connections simultaneously and dump

the result set periodically into a file. As

an application developer we have

complete control over ‘out of memory’

error because we can periodically dump

the partially calculated result set into a

file and free up the memory.

 Following diagrams give a high

level design of the application.

Fig. 1

2
 ‘shared_memory’ and ‘work_memory’ are

configuration parameters in Postgres

configuration file

 The main thread gets a set of

usernames from all tables by querying

their parent table. This list of usernames

is in sorted order. Using ‘constraint

exclusion’ the query is executed on the

tables of required dates only [1]. This set

of usernames is shared amongst all

worker threads for further processing.

 Each worker thread is associated

with one table in the database which

holds one day’s worth of data. Each

thread queries on its corresponding table

and extracts the required data in sorted

order of username. It uses cursors [2] for

this purpose. Then this worker thread

compares username in the received

result set with the username in the list

earlier prepared by the main thread. This

is shown in figure 2.

 Main thread also prepares a

vector to store final result set. This

vector is shared by all worker threads.

Each thread writes the result set returned

Main thread

Set of

usernames

Table D1 Table D2

Parent Table

Fig. 2

by Postgres into this vector one row at a

time. While writing, it also checks if a

record for the same user already exists.

If yes, then it updates this record instead

of adding a new record. This is

equivalent to the group by operation.

Since the records are sorted by username

already, the username lookup cost is

almost negligible.

 Another thread keeps a watch on

this ‘final result set vector’ and as soon

as it finds a row in the vector which is

processed by all worker threads, it

dumps it into a file. This frees up

memory for more rows of the result set

in the memory and prevents the

application from going out of memory.

 Query used by each individual

worker thread is ‘SELECT * FROM

<tablename> ORDER BY <column

name>’. This means, each thread makes

only one sequential scan over all the

records in the table. This reduces huge

amount of memory required by Postgres

for calculating large result sets. Because,

now it has to simply return records from

the table. Even with default parameters

of Postgres, the result set is returned

without going out of memory.

 The gain in time for getting the

final result set it astounding. It takes ~13

times less amount of time to get the

result set into the file with this approach.

‘Performance comparison section’

covers the statistics.

 We have developed this

application as a middleware which will

Table D1 Table D3 Table D2

Worker Thread 1 Worker Thread 2 Worker Thread 3

Set of

usernames

Final result

set

 Fig. 3

get queries from other report generation

application, parse it and execute it on the

database and return the result set.

GROUP BY logic explained:

 A simple algorithm for a worker

thread will look as follows referring to

above Fig. 3.

1. Point db_user pointer to the first
username in the list of usernames

extracted from the database table

associated with this thread.

2. Point mem_user pointer to the

first username in the list of

 usernames extracted by main thread.

3. Read Value(mem_user).

4. Read Value(db_user).
5. Compare db_user and mem_user

and take actions based on the

result as follows.

a. Value(db_user) ==
Value(mem_user).

i. Update/create this
record in final

result set and go

to step 3.

b. Value(db_user) <
Value(mem_user)

Table D1

Worker Thread 1 Worker Thread 2

Final result

set

Table D2

mem_user

pointer

db_user

pointer

Set of

usernames

i. Increment db_user

and read

Value(db_user).

ii. Go to step 5.
c. Value(db_user) >

Value(mem_user)

i. Increment

mem_user and

read

Value(mem_user).

ii. Go to step 5.

How Postgres helped:

 The task of extracting common

result set from database by main thread

is made easier by table inheritance [3].

Also each table has a constraint defined

on it which allows the queries to choose

required tables only, when the

‘constraint_exclusion’ [1] bit is set.

 The data accessed by worker

threads is required in sorted order.

Hence, table clustering [4] helps a lot in

improving the performance of these

queries. Clustering stores the data in the

table in the order of the index on which

it is clustered and thus allows fast data

access and less swapping in and out of

main memory.

Performance comparison and

statistics:

1. Without table clustering:

Time required-

Using only DB: ~1680 sec (~28 min)

Using multi threaded application with

DB: ~130 sec (~2 min)

 Following graphs show disk

usage and CPU usage patterns of

Postgres and Multi threaded application

when the tables were not clustered on

the index.

(X-axis indicates time with each

interval=2 sec,

Y-axis indicates Values)

• Using only DB:

% CPU usage

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1 76 151 226 301 376 451 526 601 676 751 826

Fig. 4

% Disk busy

0

20

40

60

80

100

120

1 71 141 211 281 351 421 491 561 631 701 771 841

Fig. 5

• Using multi threaded application

with DB:

Main thread-

% CPU usage

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 6

Worker thread-

% CPU usage

0.00%

10.00%

20.00%

30.00%

40.00%

1 5 9 13 17 21 25 29 33 37 41 45 49 53

Fig. 7

Combined disk utilization of both types

of threads-

% Disk busy

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Fig. 8

 The initial peak corresponds to

extraction of common values for worker

threads. The remaining part corresponds

to worker thread’s operation.

2. With table clustering:

 The tables were clustered on the

index.

Time required-

Using only DB: 1162 sec (~19 min)

Using multi threaded application with

DB: 85 sec (~1.5 min)

All the graphs have similar pattern as the

earlier graphs. A combined disk

utilization graph for both types of

threads is depicted below.

% Disk busy

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Fig. 9

The initial peak corresponds to

extraction of common values for worker

threads. The remaining part corresponds

to worker thread’s operation.

Disk read/write comparisons:

 We also used Dtrace [4] scripts

to see the disk read/write patterns when

the table is clustered on an index and

when it is not clustered.

 The data used for this

comparison was different from the data

used for earlier tests.

1. Multithreaded application (with

cluster):

 As one can see from the graph,

there is a smooth read operation going

on the disk. There are very less write

operations indicating very less

swapping.

0

5000

10000

15000

20000

25000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

KR

KW

Fig. 10

Total data read: ~ 897 MB

Total data written: ~ 20 MB

2. Multithreaded application (without

cluster):

 In this case, the tables are not

clustered on the index (username). As

seen in the above graph, there is a lot of

write activity going on along with the

read operations. This indicates that there

is a lot of swapping going on as the

records needed are not available

sequentially on the disk as in case of

clustering.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 15 29 43 57 71 85 99 113 127 141 155

KR

KW

Fig. 11

Total data read: ~1214 MB

Total data written: ~1334 MB

Note that in the first case, the total

amount of data written to the disk is

approximately equal to the size of the

report file that is generated in the end.

On the other hand in the second case

there was ~1334 MB data written to the

disk as a result of swapping.

Advantages of Multithreaded

application:

 Following are the advantages of

above mentioned approach over simply

using Postgres for complex queries

requiring aggregation operations big and

complex queries.

1. Application developers control over
‘out of memory’ error.

2. Significant reduction in query
execution time (up to 13 times),

because single query broken into

multiple simpler queries is executed

by multiple threads on different

tables simultaneously.

3. Less memory requirements

(shared_memory
2
 and

work_memory
2
).

4. It keeps the disk less busy as
compared to ‘Use only Postgres’

approach. Other I/O intensive tasks

are benefited from this in our project.

Limitations:

1. The statistics and graphs above
indicate that the CPU utilization is

very high for this approach.

 The statistics were collected on

quick implementation. With careful

design of the application algorithm it

can be brought down to lower levels.

2. For one day’s data there is only one
table and as per current design it will

work at the speed of single Postgres

process.

 This can be overcome by letting

multiple worker threads access

different portions of the table and

treat these portions as different

tables.

Acknowledgement:

 I thank Yateen Joshi and Pawan

Shirbhate for their helpful suggestions

and feedback. I also thank Starent for

giving me time and providing necessary

hardware for testing.

References:

[1] Table partitioning

http://www.postgresql.org/docs/8.2/inter

active/ddl-partitioning.html

[2] Cursors

http://www.postgresql.org/docs/8.2/inter

active/plpgsql-cursors.html

[3] Table inheritance

http://www.postgresql.org/docs/8.2/inter

active/ddl-inherit.html

[4] Dtrace: How to guide

http://www.sun.com/software/solaris/ho

wtoguides/dtracehowto.jsp

